HOW DO WE EVALUATE THE VULNERABILITIES OF MIGRATORY SPECIES TO CLIMATE CHANGE?

Hector Galbraith National Wildlife Federation

VULNERABILITY ASSESSMENT

Some species may be relatively easy

OTHERS PRESENT MAJOR DIFFICULTIES - SUPERMIGRANTS

RED KNOT MIGRATION AND STOPOVER SITES

MIGRATORY WILDLIFE VULNERABILITY ASSESSMENT

- Difficult challenges for VA:
 - Highly extravagant lifestyles
 - Where? Breeding range, wintering range, stopover sites, migration itself, all of above?
 - Synchronicity?
 - Data hard to come by from parts of range
 - -Wind?

RED KNOT – WHERE ARE THE VULNERABILITIES?

- ◆ Tierra del Fuego?
- Argentina coast?
- Brazil?
- Mid-Atlantic states?
- Hudson's Bay?
- High Arctic?

- Fall or spring?
- Wind patterns?
- Synchronicities?

Comprehensive VA Needed?

Vulnerabilities of Shorebirds to Climate Change

Hector Galbraith¹, Stephen Brown², David DesRochers³, Michael Reed⁴

¹National Wildlife Federation ²Manomet Center for Conservation Sciences ³Dalton State College ⁴Tufts University

Objectives

Evaluate change in extinction risk of North
 American shorebirds due to climate change

Why Shorebirds?

- Reported widespread declines
- Sentinels of global environmental change because of their hemispheric ecosystem use
- Migratory aggregations of some species are a spectacular biological phenomenon
- Iconic species valued by public?

SHOREBIRDS ARE IN TROUBLE

Based on migration counts in eastern N. America; Bart et al 2007. JAv. Biol

MAIN QUESTIONE ASKED

How much does climate change move the needle on the existing vulnerability categories of USCP/PIF?

U.S. Shorebird Conservation Plan Risk Categories

- 1) Not at Risk
- 2) Low Concern
- 3) Moderate Concern
- 4) High Concern
- 5) Highly Imperiled
- 6) Holy Smokes! Really, highly imperiled Critical

Vulnerability Factors

	Score	Arrow
1) Loss/gain in breeding habitat under climate change	3	↑
2) Loss/gain in wintering habitat under climate change	5	↑ ↑
3) Loss/gain in migration habitat under climate change	3	↑
4) Degree of dependence on ecological synchronicities	5	↑ ↑
5) Migration distance	4	↑
6) Degree of breeding, wintering, or migration habitat specialization	4	11

Risk Factors

1) Loss/gain in breeding habitat under		
climate change:	Score	Arrow
Major loss (>50%)	5	$\uparrow \uparrow$
Moderate loss (10-50%)	3	\uparrow
Limited or no loss (-10-10%)	0	0
Moderate increase (10-50%)	-1	\downarrow
Major increase (>50%)	-2	$\overline{}$

Note: risk could decrease

Example: Semipalmated Sandpiper

Yearlong rainfall predicted to \uparrow throughout breeding range. May result in flooding & loss of much breeding habitat especially since the species prefers drier areas with access to water. Nesting habitats along shorelines also could \downarrow as a result of increased rainfall.

Confidence = low

Semipalmated Sandpiper

	Score	Arrow
1) Loss/gain in breeding habitat under climate change	3	
2) Loss/gain in wintering habitat under	5	·
climate change 3) Loss/gain in migration habitat under	3	1 1
climate change 4) Degree of dependence on ecological	3	↑
synchronicities	5	$\uparrow \uparrow$
5) Migration distance	4 ,	↑
6) Degree of breeding, wintering, or migration habitat specialization	4	† †

Change in status from 'moderate concern' to 'highly imperiled'

Application

 Evaluated 49 species of shorebird breeding in North American north of Mexico

 For each factor, included confidence level

Determined shifts in risk categories

Results for 50 Shorebirds

- ◆ 43 species (86%) predicted to ↑ risk level due to climate change
 - 34 increased by 1 level
 - 9 increased by 2 levels
- 3 species at lower risk

- ◆Solitary sandpiper more breeding habitat
- Bristle-thighed curlew more breeding & wintering habitat
- → White-rumped sandpiper more wintering habitat

U.S. Shorebird Conservation Plan

Risk Category	Current	Expected with climate change
Not at risk	О	О
Low concern	7	2
Moderate concern	15	7
High concern	23	13
Highly imperiled	4	17
Critical	_	10

Species in New 'Critical' Category

- Snowy Plover
- Wilson's Plover
- Piping Plover
- Mountain Plover
- Am. Oystercatcher

- Long-billed curlew
- Bar-tailed godwit
- Ruddy turnstone
- Sanderling
- Short-billed dowitcher

Where from here?

- Detailed species-specific VA
- ID common risks as focus for management activity
 - -e.g., shoreline habitat on migration routes & wintering areas
- Still reviewing the assessments & considering degree of threat to shift risk category
- We welcome feedback, things to consider, insights, information___

TAKE HOME MESSAGES

- For complex spp. We need complex, comprehensive VA
- They are doable (?)
- Build off of existing structures if possible (PIF, NAWP, etc.)
- Must be resilient to lack of data
- Can they be applied to less wellknown species?